
REPORT: Explainable AI and Hedonic Rent Models
25 / 08 / 22 - 0 minute read
Decision making in hedonic modeling can be made more transparent with machine learning. Based on a sample of 52k apartments in Frankfurt am Main Interpretable Machine Learning (IML) methods are used to examine feature importance, feature effects and spatio-temporal effects.


Marcelo Cajias
Head of Data Intelligence
Marcelo Cajias heads the Data Intelligence section, which is part of the Investment Strategy and Research team at PATRIZIA. In his role he is responsible for the global portfolio of analytical solutions and dashboards that support strategic investment decisions by means of observed and unobserved machine learning forecast models for various asset classes. Marcelo studied business administration at the University of Regensburg in Germany, majoring in statistics, econometrics and real estate economics. He received his doctorate for his thesis on the economic impact of sustainability on listed real estate companies.
His research has been published in various international journals and he has received the RICS Best Paper Award and the German Real Estate Research Prize.

Dr. Marcelo Cajias
Head of Data Intelligence
Weiterere Themen